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A Coupled-Mode Approach to the Analysis
of Fields in Space-Curved and
Twisted Waveguides

XI-SHENG FANG aND ZONG-QI LIN

Abstract — A coupled-mode approach for solving Maxwell’s equations in
terms of unitary and reciprocal unitary vectors is deduced in a twisted
space-curved coordinate system. Application of this method to the analysis
of fields in a space-curved and twisted single-mode optical fiber and a
twisted rectangular microwave waveguide is presented and compared with
the results from existing literature.

I. INTRODUCTION

ECENTLY, the development of optical fiber technol-

ogy and the application of infrared lasers have led to
growing interest in an in-depth analysis of the wave propa-
gation along space-curved and twisted waveguides. Lewin
et al. [1] have given a general summary of the available
analysis in this field. Because of the lack of appropriate
mathematical tools, most of the analyses are limited to the
pure bending case (with zero torsion) [2]-[5] using the
toroidal coordinate system and the pure twisted case [6]-[9]
using physical intuition. However, space-curved and twisted
waveguides are encountered more often in practical appli-
cations. .

The basic feature of a space-curved and twisted wave-
guide is that the centerline of the waveguide is a space
curve which can be described by a position vector R(s), a
function of s, the arc length measured from an arbitrary
point [1]. The cross section of the waveguide at any value
of s is maintained in the same form as that of the original
straight waveguide. The orientation of the cross section
could coincide with the unit normal vector a, and the unit
binormal vector a, of the Serret-Frenet frame or could
deviate from them by a certain angle. Only in the latter
case is the waveguide regarded as being twisted.

In the space configuration mentioned above, different
coordinate systems could be used to solve Maxwell’s equa-
tions. Sollfrey [10] first used a nonorthogonal curvilinear
coordinate system. Pierce et al. [11] used the “sheath”
method. These analyses are mainly concerned with the
field in the vicinity of a helical wire. The present authors
[12] have analyzed the field in helically wound optical
fibers by using the local orthogonal curvilinear coordinate
system introduced by Tang [13], [1]. This method does not
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seem to be very effective in solving field problems for
waveguides with noncircular cross sections. Lewin [14], [1]
derived the scalar wave equation to study twisted rectangu-
lar waveguides by using the helical coordinate system. The
nonorthogonal system composed of the unitary and re-
ciprocal unitary vectors has been used by Yabe erf al. [15]
in solving the fields of dominant hybrid modes in a twisted
rectangular waveguide. However, the perturbational fea-
ture of that method makes it ineffective in those cases
where the power of one mode will fully transfer into
another mode.

In this paper, an attempt has been made to use a
coupled-mode approach to solve the guided-wave prob-
lems in space-curved and twisted waveguides by using the
unitary and reciprocal unitary vector coordinate system.
The field equations and the formulation of the coupled-
mode equations will be described in the subsequent sec-
tions, and the applications of this method to the fields in a
space-curved single-mode optical fiber and a twisted rect-
angular microwave waveguide will be presented as an
initial test and verification of this method. Problems which
need further investigation will be discussed.

II. THE UNITARY AND RECIPROCAL VECTORS IN A
TWISTED SPACE-CURVED COORDINATE SYSTEM

As shown in Fig. 1, the centerline of the waveguide is a
smooth space curve, which can be described by a position
vector R(s), a function of s, the arc length measured from
an arbitrary point. The cross section of the waveguide on a
plane perpendicular to the space curve at any point with
its arc length s should be precisely the same as that of the
original straight waveguide. The orientation of the cross
section could deviate from the Serret—Frenet vectors a,,
and a, [1] by an angle @, with @ = [Juds. Here a, a
function of s, is defined as the twist rate of the waveguide.
In this paper, we introduce the twisted coordinates
(X,Y,S), in which axes X and Y are in the plane of a,
and a, of the space curve but rotate through an angle @
relative to the Serret-Frenet vectors a, and a, with S

equal to s, i.e.,
sin@ 0(|n

X cos@
Y|= —sin@ cos@ Ofl»b

S 0 0 1ils

ey
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Fig. 1. The Serret-Frenet frame (a,,a,,a,) and the twisted space-
curved coordinate system (X,Y,S). Plane L is perpendicular to the
space curve. The twist angle is , with = [Jads, where a(s) is

the twist rate of the waveguide.

where n, b, and s are the coordinates in the Serret-Frenet
frame [1]. The unitary and reciprocal unitary vectors can
be derived according to the formal procedure [16]. For the
position vector of an arbitrary point »= R(s)+ na, + ba,
[1], the unitary vectors will be

a, = 8r/8X=ancos®+absin®=aX
a,=0dr/0Y = —ansin@+abcos®=ay
a,=dr/3S=—b(a+1)a,+n(a+r)a,+(1—xn)a,

=—Y(a+1)ay,+ X(a+1)ay

+[1—x(Xcos®—Ysin@)]as (2)

where x is the curvature and 7 is the torsion of the
centerline of the waveguide [1].

Let V=a,-(a, X a;). We have V' =1— xn. The recipro-
cal unitary vectors will be

Y(a+7)
a1=(a2><a3)/V=aX+——————V a,

Xla+r
a’= (a3Xa1)/V=ay——(V~)as

a*=(a,xa,)/V=a,U/V.

(3)

The relevant metric coefficients can be derived according
to the relation g, =a,-a;
833 = v? 1‘(""*' 7)2(X2 + Yz)

gn=1 gn=1

g12=8n=0 813:g3l=_(“+7)y

8n=8n=(a+T1)X

(4)

979

It is important to mention that the normal to the waveguide
wall at a certain point is always contained within the plane
defined by the vectors a' and a? at that point. The reason
for that is simple. In order for the cross section of the
waveguide at any arc length s on the centerline to remain
invariant in the X,Y coordinate system, the equation of
the surface of the waveguide wall should be independent
of §; ie., it can be written in a form ¢(X,Y) =0, where
o(X,Y) is a definite function of the two variables. The
normal to the waveguide wall will be [16]

vo(X,Y)=a'0¢/0X +a*d¢/dY. (5)
That means the normal to the waveguide wall is in the
plane defined by &' and a?.

Accordingly, for a straight waveguide with the same
cross section, the equation of the guide wall will be ¢(x, y)
=0, with x, y the Cartesian coordinates, and the normal
to the guide wall will be

(6)

where i, and i, are the unit vectors along the x and y
axes in the Cartesian coordinate system.

vo(x,y) =i, d¢/dx+i,3d¢/dy

IIT. MAXWELL’S EQUATIONS AND THE

CoUPLED-MODE FORMULATION

We resolve the electric field into its covariant compo-
nents and the magnetic field into its contravariant compo-
nents such that

(7

Using the expression for the curl of a vector with respect
to a set of general coordinates [16] and the relations
between the covariant and contravariant components and
the relevant vectors

3
a,= Z gtjaj (8)

3
H,= Z ginj
=1 j=1

we can derive Maxwell’s equations in the unitary and
reciprocal unitary coordinate system and obtain

0F, OE;\ JE, OE, +(3E2 8E1)
9% _ 4 it S} T T,
(8Y 3s )“1 as  ax [T\ ax " ey |
=— jouV(H'a,+ H%a, + Ha;) (9)
a(H*V?) oH* aH! 3(HV?
( ) _ + 1 |a'+ - ( )+12 a’
Y 39S as X
dH* JH!
+|V —— +1%|a?
[ ax  ay }“
= joeV(E,a' + Eya® + Eja®) (10)
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with
1 XaH2 YaH2 LR
= (at )| Xy —Yoy ~H = X5
L OH? dH?
+(a+7)| X % - XY I (11)
gH'  9H'  9H®
Pl Yy = Xy ~ 155
? H3+XY8H3 (12
+(a+71)|— X 57 )
I’ X—aH1 Y—aH2 2VH?
= + +
(at | X755 ¥ 55
H' 0H?
2 2 2
—_ ___+Y _—
+(a+T1) { X 7 oY
Xy o’ _ o +YH!'— XH? (13)
TN Tx T oy '

In the subsequent part of this section, the formal cou-
pled-mode analysis procedure in [17] is used to treat the
above Maxwell’s equations in the waveguide. The total
covariant components E, and E, and the total con-
travariant components H ! and H? of the transverse fields
are expanded into series of the transverse fields of the ideal
modes in a straight waveguide with the same cross section
as that of the space-curved and twisted waveguide.

The ideal modes are characterized as

E(7) = e,y (X, Y )exp(—v,S)

H(IV) (V)(X Y)exp( YVS)

(i=1,2,3) (14)
where » is used to label the modes.

The total transverse field components of the actual
waveguide are expressed as the sum of the field compo-
nents of the ideal modes with proper coefficients 4, and
B,, which are functions of the arc length s only. It is
understood that the propagation factor exp(—v,S) is in-

dA,
Z{[—(ds ﬂ)"z@ﬁxvaV(XCOS@ Ysin@)ex) + xB,sin @eso) + 7
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cluded in these coefficients. We have

E = ZA (S)e,,)(X,Y)

ZB (S, (X,Y)  (i=1,2).

(15)
The field functions of the ideal modes satisfy the following
Maxwell’s equations:

863(,,)
ayY

863(,,) .
ax | ?

== j"-’.uo(hl(u)al + h%v)a2) (16)

+ YVeZ(V))al + ( - Yvel(v) -

aez(y) ael(v) .
|G- St )a3=—]wuohzy)a3 (17)
3/1?,,) 8hgy)
=jw§(e1(u)a1+e2(V)a2) (18)
oh? ont
o (»)
( 3% BY) ]weew)a (19)

Here, we emphasize again that only the total transverse
field components of the waveguide are expanded into
series of ideal modes, while the longitudinal components
E, and H? should be derived from Maxwell’s equations
(9) and (10) such that

dH?* 9H! ; .
E3 = a—X - W + I /V jwﬁ
=Y [VBes + ] (20)

s JE, JE, ) s
H” = ax oY (_]wIU'OV)=ZAVh(V)/V (21)

where
/( jweV)

+0[(a+r)x].

B
+ Yh? 24,03,

d
(V)) ds

J,,=(a+fr)[(Xh1(,,)

(22)

We now substitute the field expansions (15), (20), and (21)
into Maxwell’s equations (9) and (10) and using mode
equations (16)—-(19), they may be expressed as

aJ,

a,

a4 aJ,
’ (E+B )e“”_XY”B”(XCOS@_YSin@)euv)+XBVCOS ey - a—);]“z} =0 (23)
dB,
Z{ (dS )hf,,)+xy,,Av(Xcos®—Ysin@)h(zy)-}-XAVSin®h?V)+IV1 at
dB,
+ (dS )h(,,) XY, ,,(Xcos@ Ysm@) (u)+XA COS@h(y) a2}=0 (24)
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where

[ on a2 dA, |
— (O (v) v
——(a+7‘) B,,(X 7y 3% —h%,,)) h?,,) dS
+0[(a+1)’x] (25)
i anL ant Y . dA, ]
I’=(a+7)|B|T—& - x—& _p2 X
(a T)_ ( ix Yoy o) yregs |

+0[(a+7)’x]. (26)

In order to proceed further with the derivation of a cou-
pled-mode equation system, we need the orthogonality
relation of the ideal modes

/A(él(v)h%n) eZ(V)h(p,))dA PJ,,

3

(27)

where A, indicates the infinite cross section and §,, the
Kronecker delta for discrete indices p and ».

We take the scalar product of (23) with (h(ﬂ)a1 + h(ma )
and (24) with (e, a; + ey,,a,), and use the relation
a;-a’ =39, . After integration over the infinite cross sec-
tion, we obtain, with the help of the orthogonality relation
@n,

dA,
as

of -5

(M) h%) 1' v
ox * *

dA/P, (28)

dB
7S —= + 4, Z/ Ly, + Ley,, + xF, 4,]da/p,
(29)
where

G,y = 1,( Xcos @ — Ysin @)(— e i) + €10h%))
 (sin @+ cos @y ) exr
= v,( Xcos @ — Ysin @) (A1) = Hhnerm)
(s @er + cos ey (30)

As the transverse fields are composed of waves traveling
in the positive s and negative s directions, we introduce
the transformation

A,=Cr+CS B,=C'—-CS
where C.;” denotes the complex amplitude of the forward-
travehng wave and C that of the backward-travehng
wave.

Substituting (31) into (28) and (29), adding and subtrac-
ting these two equations, we finally obtain the following

(3D -

coupled-mode equations
ac;
¢-Lf|-5

+ Lley, + x(4,F,, + B,,G,,ﬂ)] dA /(2P”) (32)

Y12 1
By aXh(m tLey,

vivp

-2 [~

A,F, +B,,G,,’L)] dA/(2P,). (33)

dC‘
—ILe ()

3X (#)

- Iu2e2(;1) + X( viop
It is worthwhile to note that the expansion of the trans-
verse covariant and contravariant components of the fields
in a space-curved and twisted waveguide into series of the
transverse fields of the ideal modes in a straight waveguide
is rational in the following boundary condition considera-
tion. As described in the last part of Section II, we can see
that if a vector 4i, + Bi, is perpendicular to the wall of a
straight waveguide at a certain point on the boundary of
the cross section, then Aa' + Ba? will be perpendicular to
the wall of the curved and twisted waveguide with the
same cross section. Using the relations of multiplication of
unitary and reciprocal unitary vectors, we can easily prove
that the transverse fields E,, E,, H, H? will automatically
satisfy the boundary conditions when they are expanded
into series of corresponding fi¢ld components of the ideal
modes in the straight waveguide.

IV. APPLICATION TO WAVE PROPAGATION
PROBLEMS IN SINGLE-MODE OPTICAL FIBERS

We consider a simple case where we assume that there
are only two polarization modes HE; and HE]]} with
HE XT, etc., denoting the transverse fields of the ideal
modes. The total transverse field in the curved and twisted
optical fiber is
Cy (HERYT) + Cx (HERT) + € (HE{'T)

+Cy (HELT). (34)
Substituting the standard field expression [18] in a step

index single-mode fiber into (32) and (33), after a labori-
ous but straightforward derivation, we obtain :

dCy

4s —s tJB YCY

(a+ 1)~ C; + Cz/2+0(1/83a?)]
- (35)
dc;

ds

+ jBxCy = (a+1)[Cy — Cy/2+0(1/B%a?)]
(36)

dcy

5 JByCy = (a+ 1)~ Cx +Cy/2+0(1/8%a?)]
(37)

dCx : - - + 2 .2

—5 ~ iBxCx = (a+ 7)[Cy = CT/2+0(1/B}a?)]
(38)
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where 8, and BY denote the propagation constants of the
HE and HE], modes. At s=0, we assume Cx|,_
Cyli_o=0. Then because (85 + By) > (a+ 1) and

> 1, the solution of the above equations will be Cy = O
Cy =0, and

dc;
= — jBxCx +(a+1)Cy (39)
ds
dcs
LB C—(arn)CE (40)

These equations have been verified by experiments and are
generally acknowledged [6]-]9], [19], [20], so the derivation
of (39) and (40) from (35)~(38) can be regarded as a test of
the validity of the theory in the case of optical fibers.

V. APPLICATION TO TWISTED MICROWAVE
RECTANGULAR WAVEGUIDES

A procedure similar to that in the last section may be
applied in the case of twisted microwave rectangular
waveguides in which the total transverse fields are expan-
ded into series of ideal modes TE,,, and TM,,, with TEX,T
etc. denoting the transverse fields of the ideal modes. The
total transverse field is

mn
mn

(41)

Substituting the standard field expressions of the different
modes [21] in a rectangular waveguide with infinite con-
ductive walls into (32) and (33), we find that the modes
which may be excited by the dominant TE;;, mode are
TE,, and TM,, , with p even and g 0dd, and TE,,,, with n
odd. This is in good agreement with [15].

Calculations of the coupling coefficients in (32) and (33)
show that the main higher order mode which could be
excited by the dominant TE;, mode is the TE; mode.
Other modes are relatively small. In order to obtain a clear
physical picture, we neglect for the moment all higher
order modes other than the TE,, mode, and assume that
the TE,; mode is cut off in the straight waveguide with the
same cross section. After straightforward derivations
according to (32) and (33), we obtain

+ C(mn)(Tan )] -

‘0‘% +yuCoi = (M + M) /(2Py)  (42)
dng ~YoCo = (M= M,)/(2P,)  (43)
djsm 110G = (N, + N, ) /(2Pyo) (44)
% Y1C0=T(N, = N,) /(2Py) (45)

where v,, is a positive real value vy = |(— k2 + 72/b*)'/2,
while v,, = jiByy = jl(k* — 72/a*)*/?| is an imaginary
value; a and b denote the cross-sectional dimensions and
k=2a/A, with A the space wavelength of the wave.

M, M,, N,, N, are coefficients determined by the field
amplitude C,;, Cy, and other constants, i.e.,

s "0 (ch+ ) +o(ra)] a6)
—8jw
= l(ch-ca)rota)l @)
0
8
1—77—710—[(C01+C01)+0(m)] (48)
Jwepgh
8jwy,
Ny= =[G = ) +0(ra)] (49)
0
while
Py = jvrzway01/(2p0b) (50)
P, = jmwby,,/(2pqa). (51)

At s =0, we assume Cigl,—,
and (43) will be

= (; then the solution of (42)

_ T(JIBTMI + Y01M2)
Cy+Cq = P 10 (52)
01(Y01 + :BT)
T(JIBTM + yu M, )
Co—Cou = (53)

POl(Y01+BT) 10
Ch < (ra/27)°C}, (54)

JBr= jBro+167a(Co + Cqp ) /(K?D7). (55)
In determining the value of (Cgj + Cp;), etc., we could use
the approximation B, = ;.

Taking a rectangular waveguide as an example with
a=229 cm, b=1.02 cm, A=3 cm, and a twist rate
a=a/11.4 rad /cm and substituting these values into (52),
we find that the relative amplitude of the electric fields of
the TE;, mode to the dominant TE, mode ad; /bA4,, is

a{Csi +Cy1)

o . 005
b(Cihy + Crp)

(Crp < 0.01C5)  (56)

which is generally consistent with the result in [15]. How-
ever, the value of Cj; — Cy;, the relative amplitude of the
magnetic field of the TE;, mode, is different.

In the above example, we have neglected all higher
modes other than TE,. In fact, no difficulty will occur if
more higher order modes have to be taken into account.
The propagation constant B [22] of the hybrid mode can
also be obtained. In short, we can derive the hybrid-mode
fields and also the modification of its propagation con-
stants from the coupled-mode equations in twisted rectan-
gular waveguides. When the cross section of the waveguide
becomes more and more square such that the TE; mode
propagates [23], then y,; will be imaginary. In this case the
coupled-mode approach still works, but the solutions will
have features similar to that of optical fibers, and the TE
and TE,, modes will couple. The capability of this method
for solving fields problems in nearly square guides has the
same advantage as the coupled-mode approach.
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V1. DiscussioN

The coupled-mode approach to field problems in space- l

curved and twisted waveguides appears to be attractive
because of its ease of physical interpretation and flexibility
in application. Two examples have been given in this paper
as an initial test of the validity of this method. However,
the mathematical rigor needs to be further investigated.
For example only the transverse components of the fields
are matched in the coupled-mode approach. When the
coupled-mode equations are used to analyze the field

- distortion in curved and twisted open waveguides such as

an optical fiber, the radiation continuum modes or leaky
modes should be introduced into the calculation. The
methodology of how to handle the continuum mode
requires investigation.

Coupled-mode theory has been widely used in field
problems of straight waveguides with perturbation of their
cross section or refractive indices [17]. The introduction of
the new method to solving problems associated with
space-curved and twisted waveguides appears to be prom-
ising, :
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