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A Coupled-Mode Approach to the Analysis
of Fields in Space-Curved and

Twisted Waveguides

XI-SHENG FANG AND ZONG-QI LIN

,4hwract —A coupled-mode approach for solviug Maxwell’s equatious iu

terms of unitary and reciprocal unitary vectors is deduced in a twisted

space-curved coordhrate system. Application of this method to the analysis

of fields in a space-curved and twisted single-mode optical fiber and a

twisted rectangular microwave waveguide is presented and compared with

the results from existing literature.

I. INTRODUCTION

R ECENTLY, the development of optical fiber technol-

ogy and the application of infrared lasers have led to

growing interest in an in-depth analysis of the wave propa-

gation along space-curved and twisted waveguides. Lewin

et al. [1] have given a general summary of the available

analysis in this field. Because of the lack of appropriate

mathematical tools, most of the analyses are limited to the

pure bending case (with zero torsion) [2]-[5] using the

toroidal coordinate system and the pure twisted case [6]-[9]

using physical intuition. However, space-curved and twisted

waveguides are encountered more often in practical appli-

cations.

The basic feature of a space-ctirved and twisted wave-

guide is that the centerline of the waveguide is a space

curve which can be described by a position vector R(s), a

function of s, the arc length measured from an arbitrary

point [1]. The cross section of the waveguide at any value

of s is maintained in the same form as that of the original

straight waveguide. The orientation of the cross section

could coincide with the unit normal vector a ~ and the unit

binormal vector ab of the Serret-Frenet frame or could

deviate from them by a certain angle. Only in the latter

case is the waveguide regarded as being twisted.

In the space configuration mentioned above, different

coordinate systems could be used to solve Maxwell’s equa-

tions. Sollfrey [10] first used a nonorthogonal curvilinear

coordinate system. Pierce et al. [11] used the “sheath”

method. These analyses are mainly concerned with the

field in the vicinity of a helical wire. The present authors

[12] have analyzed the field in helically wound optical

fibers by using the local orthogonal curvilinear coordinate

system introduced by Tang [13], [1]. This method does not
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seem to be very effective in solving field problems for

waveguides with noncircular cross sections. Lewin [14], [1]

derived the scalar wave equation to study twisted rectangu-

lar waveguides by using the helical coordinate system. The

nonorthogonal system composed of the unitary and re-

ciprocal unitary vectors has been used by Yabe et al. [15]

in solving the fields of dominant hybrid modes in a twisted

rectangular waveguide. However, the perturbational fea-

ture of that method makes it ineffective in those cases

where the power of one mode will fully transfer into

another mode.

In this paper, an attempt has been made to use a

coupled-mode approach to solve the guided-wave prob-

lems in space-curved and twisted waveguides by using the

unitary and reciprocal unitary vector coordinate system.

The field equations and the formulation of the coupled-

mode equations will be described in the subsequent sec-

tions, and the applications of this method to the fields in a

space-curved single-mode optical fiber and a twisted rect-

angular microwave waveguide will be presented as an

initial test and verification of this method. Problems which

need further investigation will be discussed.

II. ~E UNITARY AND RECIPROCAL VECTORS IN A

TWISTED SPACE-CURVED COORDINATE SYSTEM

As shown in Fig. 1, the centerline of the waveguide is a

smooth space curve, which can be described by a position

vector R(s), a function of s, the arc length measured from

an arbitrary point. The cross section of the waveguide on a

plane perpendicular to the space curve at any point with

its arc length s should be precisely the same as that of the

original straight waveguide. The orientation of the cross

section could deviate from the Serret–Frenet vectors a ~

and ab [1] by an angle @, with @ = (Jxds. Here a, a

function of s, is defined as the twist rate of the waveguide.

In this paper, we introduce the twisted coordinates

(X, Y, S’), in which axes X and Y are in the plane of a.

and ab of the space curve but rotate through an angle @

relative to the Serret–Frenet vectors a ~ and a ~ with S

equal to s, i.e.,
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It is important to mention that the normal to the waveguide

wall at a certain point is always contained within the plane

defined by the vectors al and a 2 at that point. The reason

for that is simple. In order for the cross section of the

waveguide at any arc length s on the centerline to remain

invariant in the X, Y coordinate system, the equation of

the surface of the waveguide wall should be independent

of S’; i.e., it can be written in a form +(X, Y) = O, where
.s) +(X, Y) is a definite function of the two variables. The

normal to the waveguide wall will be [16]

V@(-Y, Y) =fzl f3q5/dX+a2 df#/d Y. (5)

That means the normal to the waveguide wall is in the

plane defined by al and a 2.

Accordingly, for a straight waveguide with the same

cross section, the equation of the guide wall will be +(x, y)

= O, with x, y the Cartesian coordinates, and the normal

to the guide wall will be

Fig. 1. The Serret–Frenet frame (a., ab, a.) and the twisted space-

curved coordinate system (X, Y, S). Plane L is perpendicular to the
space curve. The twist angle is @, with @) = @ ds, where a(s) is

the twist rate of the waveguide.

where n, b, and s are the coordinates in the Serret–Frenet

frame [1]. The unitary and reciprocal unitary vectors can

be derived according to the formal procedure [16]. For the

position vector of an arbitrary point r = R(s ) + na, + ba~
[1], the unitary vectors will be

a~=dr/d X=a. cos@+absin@=ax

V+(x, y) = iX d@/dx + iv 13@/dy (6)

where ix and iY are the unit vectors along the x and y

axes in the Cartesian coordinate system.

HI. MAXWELL’S EQUATIONS AND THE

COUPLED-MODE FORMULATION

We resolve the electric field into its covariant compo-

nents and the magnetic field into its contravariant compo-

nents such that

3
a2=f3r/d Y=-a. sin@ +abcos(@=a Y

E= ~ E,ai H= ~ H’s,. (7)
,=1

a7=dr/dS =–b(a+~)a. +n(a+~)ah+(l–xn)a$
,=1

=–Y(a+~)ax +X(a+fr)a Y

+[l– X( Xcos@– Ysin@J)]a,

where x is the curvature and ~ is the torsion

centerline of the waveguide [11.

Using the expression for the curl of a vector with respect

to a set of general coordinates [16] and the relations

between the covariant and contravariant components and
(2) the relevant vectors

of the 3 3

Hi= ~ gijHJ a, = ~ g,ja’ (8)

Let V= al. (a2 X aq~. We-have V=l – xn. The recipro-
~=1 j=l

cal unitary vectors will be
we can derive Maxwell’s equations in the unitary and

Y(a+ T) reciprocal unitary coordinate system and obtain
al= (a2Xa3)/P’= ax+

v as

x(a+7)
a2=(a3Xa1)/V=a Y– v a,

(~-~)al+(~-~]a,+(~-~]a,

= – japOV(H1a, + H2a2 + H’aa) (9)

a3=(a1Xa2)/V=a~/V. (3)

The relevant metric coefficients can be derived according

[

a(HV) dH2

H

8H1
—+~l al+ —....––_

i7(H3V2)

6’Y – (3s 1
+12 a2

to the relation g,j = a,. aj: 8s 8X

gll=l g2~ = 1 g33=v2+(a+ T)2(x2+Y2)

g12 = g21 = o &3=g31=-(a+7)Y ‘IV2F=3+’31”3
g23=&k=(a +7)x. (4) = jo~V(E1al + E2a2 + E3a3) (lo)
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with,

( dH2 aH2 aH3
Il=(a+T) x— —_ Hl–x—

ay “ax as )

(

aH3 aH3
+(a+T)2 X2=– XY=

I

[

aH1 aH1 aH3
I~=(a+T) Y—–x— –Hz–Y—

ax ay as 1

(

aH3 aH3
+(a+ 7)2 –Y2~+xY~

)

(

aHl aH2
13=(a+ ’T) x— —

as “as
+ 2VH3

1

[

aH1 aH2
+(a+T)2 –x2~+Y2~

I‘xy(~-%+yH1-xH2

eluded in these coefficients. We have

E,=~Au(S)e,(v)( A’, y)
v

Hf=~Bv(S)lz~v)(X>Y) (i=l,2). (15)
v

(11)
The field functions of the ideal modes satisfy the following

Maxwell’s equations:

(

de 3(u)

)(

de

— + yue2(v)
3(u)

ay
al +

)
– yvel(.) – ax a2

(= – jWO hjp)al + fi~u)a2 ) (m
(12) de2(u, del,v)

( ax – a~ )
a3 = – j~poh~,)a3 (17)

E

3h;V)

)(

ah;v)
+ y,h~,, al+ – y,htv, – ax

1
— a2

ay

= jtif(el(u)d + e2(.)a 2, (18)

(

ah~u) ah~v)

ax – ay )
a3 = j6xe3(v)a3. (19)

(13)
Here, we emphasize again that only the total transverse

field components of the waveguide are expanded into

In the subsequent part of this section, the formal cou- series of ideal modes, while the longitudinal components

pled-mode analysis procedure in [17] is used to treat the E3 and H3 should be derived from Maxwell’s equations

above Maxwell’s equations in the waveguide. The total (9) and (10) such that

covariant components El and E2 and the total con-

travariant components H1 and H2 of the transverse fields

are expanded into series of the transverse fields of the ideal
E3.[V(~-~)+13/V~~j.c

modes in a straight waveguide with the same cross section

as that of the space-curved and twisted waveguide. = Z [J%e3,., + -L] (20)

The ideal modes are characterized as
v

E,(v) =e,(v)(X, Y)exp(– Yvs)

H:v , =h~U, (X, Y)exp(–yUS) (i =1,2,3) (14) ‘here.,. ,

where v is used to label the modes.
[

J,= ((x+7) (Xh~V)+Yh~D))~+2AVh~V)
1/

(j06V)

The total transverse field components of the actual

waveguide are expressed as the sum of the field compo- +o[(a+T)2x]. (22)
nents of the ideal modes with proper coefficients A. and

Bu, which are functions of the arc length s only. It is We now substitute the field expansions (15), (20), and (21)
understood that the propagation factor exp ( – yUS) is in- into Maxwell’s equations (9) and (10) and using mode

equations (16)–(1 9), they may be expressed as

2([ (–&tv

1 (
aJv

1
+ Buy, e2(r) + XY,BU xcos @ – Ysin @) ez(.) + xB. sin @eJ(.) + = %

v dS

‘[( 1

dA aJv
— + B,YV cl(v)

+ dS 1)
– xyVB,(Xcos @ – Ysin @))el(,) + XBVCOS @)e3(.) – ~ a2 = O (23)

X([ (
)

# + ~vYv h;., + XY#p XCOS H
1

( o – Ys.in@)h~u) + XAVsin@h~V) + ~J al
u

+i ) 1}
~ + ~,y. h{,, – xY#. (XCOS@ – Ysin@)h[., + x~.cos@h~v) + 1; a2 =0 (24)
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where coupled-mode equations

+O[(a+ T)2X] (25) +

– Iv2e2(p) +X( – AVFUP+ BK’VP+O[(a+T)2X]. (26) )]WW.

In order to proceed further with the derivation of a cou- It is worthwhile to note that the expansion of the trans-
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(32)

(33)

pled-mode ~quation system, we need the orthogcmality

relation of the ideal modes

/( ‘w)%)–ez(,)h~p))d~ = P 8v p (27)
Am

where Am indicates the infinite cross section and 8P, the

Kronecker delta for discrete indices p and v.
We take the scalar product of (23) with (h&)al + h&)a 2,

and (24) with (el(P)al + ez(~)a J and use the relation
ui. aJ=8 . After integration over the infinite cross sec-

tion, we ~btain, with the help of the mthogonality relation

(27),

dAP
— + yPBP
dS

where

) 3 (30)+(sin@cl(w)+cos @eZ(p)h(.).

As the transverse fields are composed of waves traveling

in the positive s and negative s directions, we introduce

the transformation

A,= C; -t CP- BP= C,h – CP- (31)

where Cp+ denotes the complex amplitude of the forward-

traveling wave ‘and Cp- that of the backward-traveling

wave.

Substituting (31) into (28) and (29), adding and subtrac-

ting these two equations, we finally obtain the following

verse covariant and contravariant components of the fields

in a space-curved and twisted waveguide into series of the

transverse fields of the ideal modes in a straight waveguide

is rational in the following boundary condition considera-

tion. As described in the last part of Section II, we can see

that if a vector AiX + BiY is perpendicular to the wall of a

straight waveguide at a certain point on the boundary of

the cross section, then Aal + Ba 2 will be perpendicular to

the wall of the curved and twisted waveguide with the

same cross section. Using the relations of multiplication of

unitary and reciprocal unitary vectors, we can easily prove

that the transverse fields El, Ez, H1, H2 will automatically

satisfy the boundary conditions when they are expanded

into series of corresponding field components of the ideal

modes in the straight waveguide.

IV. APPLICATION TO WAVE PROPAGATION

PROBLEMS IN SINGLE-MODE OPTICAL FIBERS

,We consider a simple case where we assume that there

are only two polarization modes HEfi’ and HE~l with

HE; ‘T, etc., denoting the transverse fields of the ideal

modes. The total transverse field in the curved and twisted

optical fiber is

Substituting the standard field expression [18] in a step

index single-mode fiber into (32) and (33), after a labori-

ous but straightforward derivation, we obtain

dC;
~+j&c; = (a+?)[–c~ +c;/2+o(l/@#)]

(35)

dC;
~+jflxc; = (a+ ’T)[c; –c;/2+o(l/j3#~)]

(36)

dC;
—– j~YCj = (.+,)[–c~ +c:/2+o(l/p;a2)]
dS

(37)

(38)
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where fl,Y and B ~ denote the propagation constants of the

HEfi and HE~l modes. At s = O, we assume C= 1,.O ~

C~\,=O ~ O. Then because (~x+PY) >> (a+ ‘r) and p2a2

>>1, the solution of the above equations will be C; ~ O,

C; ~ O, and

dC;
—=–j~xc; +(a+~)c’;

dS
(39)

dC;
—=–j~yc; –(a+r)cl.
dS

(40)

These equations have been verified by experiments and are

generally acknowledged [6]-[9], [19], [20], so the derivation

of (39) and (40) from (35)–(38) can be regarded as a test of

the validity of the theory in the case of optical fibers.

V. APPLICATION TO TWISTED MICROWAVE

RECTANGULAR WAVEGUIDES

A procedure similar to that in the last section may be

applied in the case of twisted microwave rectangular

waveguides in which the total transverse fields are expan-

ded into series of ideal modes TEmn and TM~. with TE~~

etc. denoting the transverse fields of the ideal modes. The

total transverse field is

~ [cJ.(TE;:) + C~n(TEj;) + CJn)(TM~:)
nln

+ C(j,~J(TMj;)] . (41)

Substituting the standard field expressions of the different

modes [21] in a rectangular waveguide with infinite con-

ductive walls into (32) and (33), we find that the modes

which may be excited by the dominant TEIO mode are

TEPg and TMP~, with p even and q odd, and TEO., with n
odd. This is in good agreement with [15].

Calculations of the coupling coefficients in (32) and (33)

show that the main higher order mode which could be

excited by the dominant TEIO mode is the TEOI mode.

Other modes are relatively small. In order to obtain a clear

physical picture, we neglect for the moment all higher

order modes other than the TEOI mode, and assume that

the TEOI mode is cut off in the straight waveguide with the

same cross section. After straightforward derivations

according to (32) and (33), we obtain

dC;
--&- + yolc~ = T(M1 + M2)/(2P01) (42)

dC~

dS
— – YOIG = ~(Jfl – ~2)/(’2’f’ol) (43)

dC;
~ + yloc~ = ‘r(ivl + N2)/’(2P10) (44)

dC;
— – Ylocl; = d~l – ~2)/(2~lo)

dS
(45)

where yol is a positive real value yol = 1(– k 2 + n 2/b2)l/z 1,

while ylo = JIlo = jl( k2 – r ‘/a 2)1/2I is an imaginary

value; a and b denote the cross-sectional dimensions and

k = 2v/ A, with A the space wavelength of the wave.

Ml, M2, Nl, N2 are coefficients determined by the field

amplitude C~o, Cl; and other constants, i.e.,

Ml= -8T:Y:[(CL+ Cfi)+o(nz)] (46)
ju~poa

M2 = -8joy10[(c~- c~)+o(7a)] (47)
Po

N1 = 872:02 [(CJ +Cfi)+o(’uz)] (48)
juepob

N2 = ‘[( CJ-C;)+O(ra)]
Po

(49)

while

PO, = j~20ayo1/(2pob) (50)

Plo = jm2uby10/(2poa) . (51)

At s = O, we assume Cfi\,=o ~ O; then the solution of (42)

and (43) will be

(52)

(53)

C~ < (7a/2~)2C~ (54)

j&~ .h + 16Ta(cJ + C& )/(k2b3). (55)

In determining the value of (CJ + Co;), etc., we could use

the approximation ~~ ~ ~lo.

Taking a rectangular waveguide as an example with
a = 2.29 cm, b = 1.02 cm, A = 3 cm, and a twist rate

a = n/n.4 rad/cm and substituting these values into (52),

we find that the relative amplitude of the electric fields of

the TEOI mode to the dominant TEIO mode aAol /bA1o is

a(C&+Col)

b(C~+C~)
+ - jO.05 (Cfi < O.OIC~) (56)

which is generally consistent with the result in [15]. How-

ever, the value of CJ – Co;, the relative amplitude of the

magnetic field of the TEO1 mode, is different.

In the above example, we have neglected all higher

modes other than TEOI. In fact, no difficulty will occur if
more higher order modes have to be taken into account.

The propagation constant ~~ [22] of the hybrid mode can

also be obtained. In short, we can derive the hybrid-mode

fields and also the modification of its propagation con-

stants from the coupled-mode equations in twisted rectan-

gular waveguides. When the cross section of the waveguide

becomes more and more square such that the TEOI mode

propagates [23], then yol will be imaginary. In this case the

coupled-mode approach still works, but the solutions will

have features similar to that of optical fibers, and the TEIO

and TEOI modes will couple. The capability of this method

for solving fields problems in nearly square guides has the

same advantage as the coupled-mode approach.
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VI. DISCUSSION [13]

The coupled-mode approach to field problems in space-

curved and twisted waveguides appears to be attractive

because of its ease of physical interpretation and flexibility

in application. Two examples have been given in this paper

as an initial test of the validity of this method. However,

the mathematical rigor needs to be further investigated.

For example only the transverse components of the fields

are matched in the coupled-mode approach. When the

coupled-mode equations are used to analyze the field

distortion in curved and twisted open waveguides such as

an optical fiber, the radiation continuum modes or leaky

modes should be introduced into the calculation. The

methodology of how to handle the continuum mode

requires investigation.

Coupled-mode theory has been widely used in field

problems of straight waveguides with perturbation of their

cross section or refractive indices [17]. The introduction of

the new method to solving problems associated with

space-curved and twisted waveguides appears to be prom-

ising. ,
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